If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10m^2-20m-48=0
a = 10; b = -20; c = -48;
Δ = b2-4ac
Δ = -202-4·10·(-48)
Δ = 2320
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2320}=\sqrt{16*145}=\sqrt{16}*\sqrt{145}=4\sqrt{145}$$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-20)-4\sqrt{145}}{2*10}=\frac{20-4\sqrt{145}}{20} $$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-20)+4\sqrt{145}}{2*10}=\frac{20+4\sqrt{145}}{20} $
| 6(x+1)=8x+36 | | -3r^2=-111 | | 5x+46-68=34-8x | | 15x=98 | | 2x+1x=26 | | 8x^2+104x+336=0 | | 3x+x+⅔x=28 | | 8x+26=3 | | 14x-17=4x+8 | | 10m2-20m-48=0 | | 2b+4=8 | | 2u+2+-32=-14 | | 0.9c+1.89=17.01 | | (-12)-a=19 | | 0.9+1.89r=17.01 | | 7r-5=6r+4 | | x+87=142 | | 3x/5+2=1 | | 5x/2+6/2=3-(4x+12) | | x-72=24 | | -1-8/3(¼x)=2 | | -4(n+4n)-2(2n+3n)=50 | | 2u=-35-3u | | 5x²-11=0 | | -9(e+18)=45 | | 5(x-2)=7+2x-4 | | F(2)=5x-3 | | -2(8x-7)+8x=4(x+7) | | 2(x)=200 | | 2x=4=-(-7x+6) | | (x+50)=100 | | G(2)=3x2-5x+1 |